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On the Control of Quantum Statistical Systems 

M o r t o n  H.  Rubin  1 
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The problem of preparing a system in some initial configuration is discussed for 
quantum statistical systems whose dynamics are generated by Markovian semi- 
groups. The system is regulated by a set of controls and the central problem is to 
determine how the controls should be varied in order to bring the system as 
close as possible to the desired configuration in a fixed finite time. General 
equations are derived which allow one to determine how the controls should be 
regulated. The application of the result to a simple system is outlined. 
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1. INTRODUCTION 

An experiment usually begins with the preparation of the system being 
studied in some initial, often nonequilibrium, configuration. Determining 
how to generate such an initial configuration is a problem that experiment 
designers must deal with all the time. This problem is usually dealt with on 
a case-by-case basis by optimizing design in order to bring the system as 
close as possible to the desired configuration. The optimum design will 
generally have a stationary and a time-dependent part. It is the latter that 
we wish to address here. 

In order to manipulate the system the experimenter has controls which 
can be used to apply various forces to the system and to transfer heat into 
or out of the system. In this paper we provide a general mathematical 
framework which mimics the experimental procedure. To do this we 
present a formalism which includes both controls and relaxation processes 
and allows us to formulate the optimization problem in general terms. In 
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particular, we provide a finite-time formalism in the sense that the system 
does not evolve either infinitely slowly or instantaneously (although we 
allow controls to be changed instantaneously). 

For systems which can be treated classically, there exists a general 
mathematical procedure for carrying through the required optimization 
calculation ~l); therefore, we limit our considerations to a class of quantum 
statistical systems. In particular, we treat Markovian systems and derive 
necessary conditions for driving them from an initial equilibrium state to a 
final configuration in a fixed, finite time. We have used the term configura- 
tion, as distinct from state, because experimentalists often do not require 
that their systems be in definite states but only that a certain set of 
measurements yield specific results. 

In the next section we present the general mathematical formulation of 
the problem we wish to analyze, and discuss some of its features. In the 
third section we derive necessary conditions for the existence of an optimal 
solution. We then consider two special cases which make the actual 
solution of the problem tractable. The first of these, discussed in Section 4 
treats finite-dimensional systems. The second, which reduces to the finite- 
dimensional case, considers the case in which the state of the system is 
required to be a maximum entropy state. 2 Finally in the last section we 
state our results and conclusions. 

2. MATHEMATICAL FORMULATION 

We shall first formally present the system we wish to analyze and then 
discuss some of its properties. We consider a system specified by a 
separable, complex Hilbert space, H. The states of the system are density 
matrices, which are defined, as usual, to be elements p of the set of linear 
operators on H such that 

(i) p is self-adjoint: p = p t 
(ii) p is non-negative: (~p, p~p) 1> 0 for all ~p ~ H 

(iii) p has unit trace: trp = 1 
An observable is a linear, self-adjoint operator defined on some suitable 
domain in H. 

The dynamics of the system is assumed to be generated by a quantum 
dynamical semigroupC3-5~ : 

Op(t) 
O ~ -  iL(t)p(t) (2.1) 

2 See Ref. 2; this book contains an extensive set of references, as well as several interesting 

papers. 
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where for any density matrix 0, the generator of the semigroup is given by 

N 
- iLo  = x o  + o x t  + s2o o 

n= |  
N 

= - i l l - R ,  R= �88 ~. BnB ~, and H = H *  
1 

(2.2) x 
n=l 

We shall further assume that 

L = L o + L'(t) = L o+ ~ g~(t)L) (2.3) 
j = l  

where (L0,Lj} are time-independent operators and the { &(t)) are piece- 
wise continuous, real, scalar functions. These functions will be the means of 
controlling the system. We shall refer to the vector g(t) = ( g l ( t ) , . . . ,  gc(t)) 
as the control vector, and require that it lie within a closed bounded region 
G of a c-dimensional, Euclidean vector space. 

We are finally ready to state the problem we wish to study. Let (Aj, 
j = 1 . . . . .  n} be a set of linearly independent observables and let the 
system be in the state O0 at t = 0. We wish to find the control vector 
g(t) r G such that at t =tf > 0 the system is close to a configuration 
defined by a set of real numbers (aft in the sense that 

1 ~ ((Aj - ajl)2>f (2.4) 
J = 2 j = l  

is a minimum. Where for any bounded operator O, 

( 0 )  I = t ro(q)O (2.5) 
with o(tf) the solution to Eq. (2.1) with p(0) = P0. 

We now wish to discuss the restrictions implied by the assumptions 
made above. The dynamics of the system is the quantum analog of a 
Markovian system. (3-6) If R and, therefore, all the Bn vanish, the dynamics 
becomes Hamiltonian. If R is not zero the system is dissipative. This means 
that the Gibbs entropy of the system, 

S(p) = - tr0 In p (2.6) 

may change, and consequently, as g varies over G, we have a greater range 
of density matrices accessible from a given initial state than in the purely 
Hamiltonian case. 

As mentioned in the Introduction, we have specified the final configu- 
ration of the system. That  is, we have not asked for a specific density 
matrix but only that the average value of some operators be suitably 
well-approximated in the sense that Eq. (2.4) be minimized. It is well 
known that once a set ((Aj)f} is determined, except in the case that the 



180 Rubin 

{Aj} are a complete set of observables, there are many density matrices 
that will give the same average values. (2'4) It has been suggested (4~ that the 
set of all these density matrices be called the macrostate of the system with 
respect to the set ((Aj)f}. Furthermore this macrostate may be uniquely 
represented by the element that has the maximum Gibbs entropy. Thus we 
may wish to replace the minimization condition (2.4) by a condition such as 

J '  = min[ tr(p(tf) - ~)2] (2.7) 

here ~ is the maximum entropy representative of the macrostate in which 
we wish to prepare our system. Since this is a different condition, unlike Eq. 
(2.4) it is not linear in p(tf), it will lead to a different final configuration. 

Although the condition at the end of the preparation is specified in 
terms of a configuration, the condition at t = 0 has been given in terms of a 
density matrix. This is justified for the case of most interest when P0 is an 
equilibrium state of the system. Of course, nothing prevents us from taking 
a configuration as our initial condition. Even in this case, where only some 
average values are given and nothing else is specified, as has been argued 
by Jaynes, (2~ the initial state is most likely to be the maximum entropy 
representative of the macrostate. 

The choice of J in Eq. (2.4) as a figure of merit for the preparation of 
the final configuration is arbitrary. As we stated above we could replace J 
by a quantity such as J '  defined in Eq. (2.7). Alternatively, one might seek 
to minimize a quantity such as the value of the Gibbs entropy at tf, that is, 
loosely speaking, find the most ordered state of the system that can be 
reached in a time tf from a given initial state using the controls in G. 
Alternatively we might replace J by Ej ( ( A j a r -  aj) 2 which is quadiatic in 
0(2). Finally it should be noted that multiplying each term in the sum in 
Eq. (2.4) by a positive weighting factor does not change the problem since 
these factors can be absorbed into the {Aj} and {aj}. 

3. NECESSARY CONDITIONS FOR THE OPTIMAL SOLUTION 

We now turn to the task of obtaining the necessary conditions for 
solving Eqs. (2.1)-(2.5). We follow the procedure used in the analogous 
classical problems (0 by introducing a time-dependent Lagrange multiplier 
q~(t) in order to treat the equation of motion (2.1) as a constraint. In 
contrast to the classical case, ~(t) must be an operator on the Hilbert space 
of the system. We now define 

M = J + f o ' J d t [ K  - ] (3.1) 
where 

K = Tr ~ ( - iLo) 
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J is given by Eqs. (2.4) and (2.5), and L is given by Eqs. (2.1)-(2.3). We 
require that ff be self-adjoint to ensure that M and K are real. As we shall 
see, the dynamics of ~ as given by Eqs. (3.8) and (3.9) are consistent with 
this requirement. In the literature of optimal control theory the quantity K 
is called the Hamiltonian; we shall reserve this name for the H in Eq. (2.2). 

To perform the variational calculation, it is necessary to consider the 
variation of 0 and the controls about the optimal solution. We shall do 
these two calculations separately. 

3.1. The State Variation 

To derive the equation of motion for ~ we consider a variation of 0 
around the optimal solution t3: ~-->p '= ~ + ~. Since O' must be a state of 
the system, the conditions (i) and (iii) of Section 2 imply that ~ is 
self-adjoint and has vanishing trace. The positivity condition is more 
difficult to handle. In control theory, it is usually difficult to deal with 
systems whose dynamical variables are constrained. (1'7) We shall see that 
the positivity condition presents a serious problem. 

Introducing O' into M and performing the usual integration-by-parts 
we obtain 

M[O' ] -- M I n i  + M'[t3,~] (3.2a) 

N 

M'[t3,~] -- • trB(tf){(Aj-aj~)2-qj(tf)} +foqdttrB[(-iDJ/)++] 
j = l  

(3.2b) 

where/~t is the adjoint of s the generator of the optimal solution. We now 
assume that ~ is small 3 and require that M [t~] be a (local) minimum. This 
requires that M' />  0. 

There is an analytic and an algebraic part to the calculation. The 
analytic part is the standard procedure of requiring that ~7 be nonvanishing 
on a small subinterval of [0, ty] so that the condition on M '  can be applied 
to the integrand in Eq. (3.2b). The end point variation then allows us to 
require that the first term on the fight-hand side of Eq. (3.2b) be nonnega- 
tive. Thus we are left with conditions of the form 

triO /> 0 (3.3) 

where O is one of the self-adjoint operators multiplying 71 in Eq. (3.2b). The 

3The requirement that • be small means that [[nil = tr[~[ << 1, where [~[ is the positive square 
root of B2. See, for example, Ref. 8. 
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algebraic part of the problem entails removing the trace in order to obtain 
an equation for O. 

Since ~ has a vanishing trace, if O is a multiple of the identity operator 
Eq. (3.3) is automatically satisfied. In order to consider Eq. (3.3) for a 
general 7/we shall write 

*l = - ieL'~ (3.4) 

where - iL' is an arbitrary operator of the form (2.2) and 0 < E << t. Then 
for e sufficiently small O'= ( 1 -  ieL')~ is a state, (5'9) so ,/ satisfies the 
required constraints. 

We carry out the calculation in two steps. First, we take an arbitrary 
Hamittonian variation, , / = - i e [ H , ~ ] ,  H =  H t. Equation (3.3) becomes 
-ictrH[~, O] >1 0. Since O is self-adjoint, we may choose H = - i [ ~ , O ] ,  
which gives - c tr[~, O ]2/> 0 so that [t3, O ] = 0. 

Next we consider a purely dissipative variation, ~/= - ( @ 2 ) [ B B t ~  § 
EBB* - 2BtkB] .  Let {la)) be a basis in which t~ and O are diagonal; then 
Eq. (3.3) becomes 

,  o( ool ol lo, l 
Let V = (a  : t;~ > 0} and V' be the complement of V. Then we choose 
( a l B l a ' ) =  b~88~, r for B, r E V, B v a )  , so that Eq. (3.5) becomes 
,~8(Or - 08)/> 0. Reversing the role of/3 and , /we  conclude that O 8 = c 
for all/3 ~ V. 

Now let ( a l B l a ' )  = b ~ 8 . ,  r, where/3 ~ V and 2r E V'. Equation (3.5) 
now becomes c~r r - c]/> 0, which requires that O r >/ c for all 3' E V'. 
Unfortunately we learn nothing new if we reverse the roles of /3 and ,{ 
because t~r = 0. This means that the ~ equation of motion has a term in it 
that depends on/~ in a complicated way. This type of difficulty is typical of 
control problems in which the state variables are constrained. (7~ 

We can avoid the difficulty mentioned above if we restrict our consid- 
erations to systems in which t3 is strictly positive. This means that V' is 
empty and we may conclude that O = cl,  where c is a scalar function of 
time. Thus from Eq. (3.26) we obtain 

= - if_,t~ + c(t)~ (3.6) 

N 

q~(tf) = ~ (Aj - @)2  + kU (3.7) 
j = l  

Since a simple calculation shows that/~*(~) = 0, we can redefine ~ so that 
q ~  + k' + ftoc(t)dt 1 and eliminate the last terms from Eq. (3.6). By a 
suitable choice of k' we can also eliminate the constant in Eq. (3.7). 
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We have 

q~ = - i/~t~p (3.8) 

N 

~(tf) = ~, ( A / -  aft) 2 (3.9) 
j = l  

It should be noted that ~b does not satisfy the equation of motion of a 
Heisenberg operator because of the minus sign in Eq. (3.8). This is 
characteristic of control problems. The natural evolution of ff is backwards 
in time in the sense that Eq. (3.9) determines ~p(tf). 

Before ending this long section we should make a comment about the 
requirement t5 > 0. This implies that t3 can never be a pure state; in 
particular, it cannot be a pure state at tf. It might plausibly be argued that 
t3 > 0 is a physically reasonable condition since one can never eliminate 
"infinitesimal" admixtures of arbitrary states. This is clearly an evasion and 
may even be false. However, for the example worked out in Section 5, ~3 is 
in fact strictly positive. In any particular problem the question of whether f3 
is strictly positive will depend on the initial condition, ~3(0) and the form 
of L. 

3.2. The Control Variation 

The effect of the variation with respect to the controls is most simply 
studied using the Pontryagin minimum principle (1'1~ 

L)O] >> 0 (3.10) Tr~[  - i ( L  t - " " 

where t~ is the solution to Eqs. (3.8) and (3.9) and L~ is the operator of Eq. 
(2.2) with the optimal controls replaced by an arbitrary, allowed control. 
Using Eq. (2.3) this becomes 

c 

[ gj( t )-~j( t )] tr[tp(- iLj~)]  >> 0 (3.11) 
j = l  

where g(t), the trial control, and g(t), the optimal control, both lie on G. 
The analysis of Eq. (3.11) is standard. (1) For example, suppose G = (g; 

Igl ~< go}, A / =  -itrtpLj~ and denote by A the c-dimensional Cartesian 
vector with components Aj. Then if tAI ~ 0, g lies on the boundary of G 
and A must point along the radius of G, i.e., ~ = - GA/]A I. If IA] = 0, then 
Eq. (3.11) does not determine g directly and further analysis is required. In 
the next section we outline such an analysis for the example presented 
there. 

This concludes our general discussion. For the dynamical system 
defined by Eqs. (2.1)-(2.3) we have derived the necessary conditions Eqs. 
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(3.8), (3.9), and (3.11) for a local minimum of J defined by Eq. (2.4). The 
fact that we have a local minimum rather than just an extremum follows 
from the use of an inequality in studying Eq. (3.2b). 

4. CONTROL OF A TWO-LEVEL SYSTEM 

Any finite-dimensional system may be handled more simply than the 
general case treated in Sections 2 and 3. The control problem can be 
reduced to a standard problem by expanding all the operators in terms of a 
complete set of matrices. For example, p = ( l / N ) ( 1 -  P .  Ig) where the 
elements of the vector lfl are N 2 - 1 independent self-adjoint matrices with 
vanishing trace normalized so t r E i Z j =  ~ij and P is an (N 2 -  1)- 
dimensional real vector such that IPI 2 < N ( N -  I). From the equation of 
motion for 0, an equation for P may be derived and the problem now 
becomes one involving N 2 -  1 coupled ordinary differential equations 
which may be treated as a control problem with a state variable constraint 
[PI:< N ( N -  1)]. In fact any practical treatment will involve such a 
reduction at some point in order to make the computation tractable. 

We now consider the example of a sp in- l /2  particle in an axisym- 
metric environment, interacting with a thermal bath. (6A l) The spin will be 
controlled by means of a weak magnetic field. As stated at the beginning of 
this paper, we are concerned with the Markovian limit in which the system 
has no memory. 

We shall take the dynamics of the system to be such that we obtain the 
Block equation. (6) Thus we take 

(4.1) 
Uo=O 

for L o in Eq. (2.3). The o's are the Pauli matrices, [ol, oj] = ida% and 
o+_ = �89 i + io2). The controls are taken to be Hamiltonian: 

H'( t )  = g(t)" ~r, Igl ~< go (4.2) 

so that the domain G is the closed sphere of radius go centered at the origin. 
J will be chosen to be 

J = �89 ( ( a  - Sf)2}f (4.3) 

The Liouville operator L 0 has a stationary state solution 

1( Y1--Y2 ) (4.4) LoP o = 0 ,  P o = ~  1 - - o  3 
Yl + Y2 

which will be taken as the initial state: ~(0)= 90, We shall drop the 
circumflex over the p from now on since we only will be concerned with the 
optimal solution. 
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We 
differential 
We obtain 

Assuming that p is strictly positive, we may write the equation for ~b(t): 

( t) = - iL t( t)~b( t) = - i[ H ' (  t),~p( t) ] 

.3 ' , (o +[ o_,~(,)] + [ ~(t), o_ ]o + ) 

+ 3'=(o_ [o+,~( , ) ]  + [~(,),o_ ]o+) 

+ �88 + yz)(03[03,#(t ) ]  + [#(t),a3]03) 

r  = l ( ~  _ Ss~)2  = , ( 3  + s # ) ~  - o . s  s 

now reduce the operator equations for 0 and #, 
equations by 

(4.5) 

(4.6) 

to ordinary 
setting 0 = �89 - p - o )  and ~ = �89 + if" o]. 

= 2 ( g  x p )  - r(p - nt3) 

4 = 2 ( g x r 1 6 2  

~0 = r/F#3 

p(0) = n~ 3, ~(q)  = -2Ss ,  ~0(q) = 3 + S~ 

where r = 2(y I + 3'2) and ~ = (3'1 - 3'2)/(3'1 + 3'2)- 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

These equations cannot be solved until g(t) is determined. Equation 
(3.1 I) becomes 

(gt - g ) ' ( ~  • P) > 0 (4.11) 

where g is the optimal control and the trial control, gt, is any element of the 
set G. If I~ • P] va 0, g must lie on the boundary of G, g = go& where ~ is a 
unit vector, and qJ x p must be antiparalM to ~. If [~k • Pl = 0, Eq. (4.11) 
does not immediately determine g. 

Before continuing, we note that ~0, the coefficient of the identity 
matrix, does not play a role in the determination of the optimal solution. 
This is an explicit justification for our treatment of the terms c(t)  and k in 
Eqs. (3.6) and (3.7). 

We now consider the case II/, • Pl = 0. If this condition can only be 
fulfilled at discrete points, then all the solutions correspond to g lying on 
the boundary of G. The points at which [ff • p[ = 0 allow for the possibility 
of discontinuous shifts in the direction of $. If [ff • Pl = 0 on a finite time 
interval, then the optimal solution may have branches along which g may 
lie inside of G. 

We now examine the possibility that [qJ • Pl = 0 on a finite interval. 
Pff • Pl = 0 implies that either ~ = 0, p = 0 or ~p and p are colinear. From 
Eq. (4.8) and the fact that ~( t f ) v  a O, it follows that ~p never vanishes. 
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Equation (4.7) implies that if p = 0, 1~ = + I'~83. Thus p cannot vanish on a 
finite time interval, and we are left with the case that ff and p are colinear. 

If [~k x p[ = 0 on a finite time interval, then inside this interval (d /d t )  
(~k • P) also vanishes. From this and Eqs. (4.7) and (4.8) we find that the 
possible solutions are 

= tP(to)83 er(t-to), 

g = g(t)83 

where g(t) is an arbitrary, 

p =  83{Tl + [ p(to) - ~l ]e -r{ '- '~ 
(4.12) 

piecewise continuous function in G. This 
corresponds to a solution in which the value of g is irrelevant and p simply 
relaxes towards its equilibrium value. It seems intuitively clear that such a 
branch is not really useful except to waste time. For example if t o = 0, then 
p(to) =77 and the system is unchanged. Therefore we obtain the not 
surprising result that we wish to use as large a magnetic field as we can. 

To determine the solution for g(t) = goB(t) is tedious and must be done 
numerically. Since we are not interested in the numerical results we merely 
outline the procedure. We introduce a rotating set of orthonormal vectors 
{8, j~/~} where f is defined by the equation dS/d t  = 7f  and/~ by d f /d t  = 
- , [ 8  + a k .  Each unit vector satisfies the equation d / d t  = (fix) where 

A 

f~ = a8 + 7k. The fact that q~ • p must be colinear with 8 then implies that 
~k" 8 = p .  8 = 0. It also turns out that either ff is colinear with k and 
a = 2g 0 or 7 = 0 .  

If 7 = 0, then along this branch 8 is independent of time and Eq. (4.7) 
has as one of its consequences that 8 . 8  3 = 0. In this case the solution may 
be written in terms of the fixed orthogonormal basis {8, 82, 83}: 

= ~P(to)e r(t- t0)[82 cos(2g0t + ~) + 83 sin(2g0t + c))] 

P = Ps + Be-r(t-t~ t + X) + e3 sin(2g0t + X)] 

2 " r S ] ,  a = F2) 1/2 p, = (7/I ' / f~)[  - 2g0e  2 + (4g 2 + 

where B = Ip(t0) - Psi and p, is the steady solution to Eq. (4.7) for the given 
g = go 8. Finally, the duration of a branch is determined by the condition 
(~k • P)" 8 < 0. The beginning and end of the branch occur when the 
equality holds. 

This solution has the property that for the initial condition p(0) = ~/83, 
p lies inside the cone swept out by p, as 8 rotates through 2~r in the x - y  
plane. Thus if S/lies inside this cone, this solution is adequate and if tf is 
long enough, J may attain the minimum value of zero. If Sf lies outside this 
cone, or if our initial condition were such that 83, S f, and p(0) were not 
coplanar, the control becomes more complicated. In this case, 8 rotates 
around ~ which itself is time dependent since 7 is in general not constant. 
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In order to reduce this problem farther it is necessary to use the equation 
for p to obtain a set of equations for the rotating coordinate system in terms 
of the fixed, laboratory frame. 

To put together a solution one starts with ~(tf) given by Eq. (4.10) and 
guesses a final p(tf). These will determine the direction of ~(tf) and then one 
must integrate back to t = 0 to determine if p(0) = 7/~ 3. It seems clear that 
the optimal solution has Igr = go and 8(t) varies smoothly remaining orthog- 
onal to the p - ff plane, although I have not proved this. Suffice it to say 
that one can obtain an optimal solution to this quantum statistical problem. 

Finally we note that it is not difficult to include thermal control into 
this problem. The temperature of the environment is related to the value of 
176 and one could treat 77 as a control parameter. 

5. THE MAXIMUM ENTROPY FORMALISM 

In the general discussion of the variational calculation in Section 3, we 
considered variations with respect to arbitrary density matrices. In this 
section we consider a more restricted set of variations which makes solving 
the equations of motion simpler. 

We consider {C j)  to be the linearly independent set of self-adjoint 
operators that appear in Eq. (2.4). Thus the { Cj} spans the same space as 
{~, Aj, A f , j  = 1, . . . ,  n) (we shall set C O = ~). Then we have 

M 

J = E (s.1) 
j = O  

We now restrict our states to those of the form lnp = - ~ M  oh.C It is 
J =  y j"  

assumed that p(0) may be written in this form, so that if p(0) = e -(~+BH0) 
then there is a linear combination of the Cj which equals H o. 

The condition that p remains in the restricted subspace imposes 
constraints on the form of L(t), the generator of the dynamical semigroup. 
The maximum entropy formalism provides a natural way to obtain an 
appropriate L from any given generator. (4'~2) In this case, one obtains a set 
of ordinary, nonlinear, differential equations for the {Xj(t), j = 1 , . . . ,  M}  
or alternatively for the averages of the Cj with respect to the optimal 
density matrix. The density matrix itself now vanishes from the problem, 
which is reduced to a standard control theory problem. 

6. SUMMARY AND CONCLUSIONS 

We have presented a general formulation of the control problem for a 
class of quantum statistical systems. We have also shown how in some 
cases the problem can be reduced to the analog of a classical control 
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problem. It should be emphasized that the control problem of preparing an 
initial configuration is a finite time problem. This is in contrast to the 
theoretical extremes of the infinite-time, adiabatic preparation of an initial 
state familiar in scattering theory, and the instantaneous preparation of a 
state by means of a projection operator. 

Although we have confined our discussion to Markovian systems, 
more general systems present "only" technical difficulties. Finally, we also 
note that the problem analyzed in this paper has application to the study of 
finite time measurements. In that case the properties of the initial state are 
to be determined by controlling a measuring device. 
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